Precalculus Unit 3: 3.1-3.3 Review
Rational Functions, Scatter Plots, and Regression Equations

Complete the following problem.

1. For the function \(f(x) = \frac{x^2+x-12}{x^2-x-6} = \frac{(x+3)(x+4)}{(x-3)(x+2)} \)

 Domain: \(\mathbb{R}, \ x \neq 3, \ x \neq -2 \).

 Vertical Asymptote(s):
 \(x = -2 \).

 Hole: \((3, \frac{7}{5}) \) \(\frac{x+4}{x-2} \Rightarrow \frac{7}{5} \)

 Horizontal/Slant Asymptote:
 \(\frac{\text{Deg}=2}{\text{Deg}=2} \quad y = 1 \)

 How did you find the horizontal/slant asymptote?
 The degree is the same so the leading coefficients are used to determine the horizontal asymptote.

 x-intercept(s):
 \(\frac{x+4}{x+2} = 0 \) \(x+4 = 0 \) \(x = -4 \)

 y-intercept:
 \(\frac{0^2+0-12}{0^2-0-6} = \frac{-12}{-6} = 2 \) \(y = 2 \)

 Sketch the function on the provided graph. Make sure to accurately plot all of the features of the graph found above.
2. Find the slant asymptote for the function \(f(x) = \frac{2x^3 + 3x^2 - 8x + 2}{x^2 + 4x - 1} \).

\[\frac{2x - 5}{x^2 + 4x - 1} \begin{vmatrix} 2x^3 + 3x^2 - 8x + 2 \\ + (2x^2 + 8x + 2) \end{vmatrix}
\]
\[y = 2x - 5 \]

3. An engineer collects the following data showing the speed \(s \) of a Ford Taurus and its average miles per gallon, \(M \).

a. Draw a scatter plot of the data. Based on the scatter plot, what type of model does it look like you will use?

\text{QUADRATIC & CUBIC ARE VERY SIMILAR. CUBIC HAS SLIGHTLY HIGHER } R^2 \text{ VALUE}

b. Using your calculator/computer, find the model that best fits this data.

* CUBIC: \(y = -0.0063 x^3 + 0.003 x^2 + 0.141x + 2.142 \)

* Best for: \(y = -.617 x^2 + 1.935 x - 25.341 \)

c. Use the function found in part b to determine the speed that maximizes miles per gallon. This can be done on the graph on the calculator.

\text{CUBIC: 56.404}

\text{QUAD.: 55.378}

d. Use the function found in part b to predict miles per gallon for a speed of 63 miles per hour.

\text{27.584 mpg.}

\text{27.212 (QUAD)}

e. Is the work in part d an example of interpolation or extrapolation?

\text{Interpolation – 63 is within the data set.}