Units 10 and 11: Linear Systems and Matrices Review

<u>10.1</u>: Solving Systems of Equations

• Solving systems of equations using substitution

1.
$$\begin{aligned} x - 3y &= -3\\ x^2 + 6y &= 5 \end{aligned}$$

10.2: Systems of Linear Equations in Two Variables

• Solving systems of equations using elimination

2.
$$2x + 15y = 4$$
$$x - 3y = 23$$

10.3: Multivariable Linear Systems

• Solving systems of three equations and three variables or four equations and four variables.

$$4x - y + 5z = 4$$

3.
$$2x + y - z = 0$$
$$2x + 4y + 8z = 0$$

$$x - y - z = 0$$

4. $2x + 4y + z = 0$
 $3x + y - z = 0$

- 11.1: Matrices and Systems of Equations
 - Using elementary row operations on an augmented matrix to produce row echelon form or reduced row echelon form of a matrix
 - Using Gaussian elimination or Gauss-Jordan elimination to solve a system using matrices.

$$x+3z=-5$$

5. $2x + y = 0$ (Make sure to fill in appropriate zeros.)
 $3x + y - z = 3$

<u>11.2</u>: Operations with Matrices

• Matrix addition, scalar multiplication, and matrix multiplication

6.
$$\begin{bmatrix} 1 & 4 & 5 \\ 2 & 0 & -3 \end{bmatrix} \begin{bmatrix} 1 & 6 \\ 0 & -7 \\ -1 & 2 \end{bmatrix}$$
 (Multiply)

7.
$$A = \begin{bmatrix} 9 & 1 \\ -4 & 8 \end{bmatrix}$$
 and $B = \begin{bmatrix} 6 & -2 \\ 3 & 5 \end{bmatrix}$, find $3A - 5B$

<u>11.3</u>: The Inverse of a Square Matrix

- Find the inverse of a square matrix if it exists
- Use the inverse matrix to solve systems of equations

8. $\begin{bmatrix} 1 & 1 & 1 \\ 3 & 6 & 5 \\ 6 & 10 & 8 \end{bmatrix}$, find the inverse if it exists

9. Use the inverse from #8 to solve the following system of equations 3x + 6y + 5z = -36x + 10y + 8z = 1 <u>11.4</u>: The Determinant of a Square Matrix; Applications of Matrices and Determinants

- Finding the determinant of a 2x2 or 3x3 matrix without using the calculator
- Finding the determinant of larger square matrices using the graphing calculator
- Find the area of a triangle using determinants given the coordinates of its vertices
- Use Cramer's Rule to solve a system of linear equations

10.
$$\begin{bmatrix} 6 & -1 \\ 3 & 4 \end{bmatrix}$$
, find the determinant

11.
$$\begin{bmatrix} 1 & 3 & -1 \\ 5 & 9 & 0 \\ 6 & 2 & -5 \end{bmatrix}$$
, find the determinant

$$\begin{bmatrix} 6 & 4 & 3 & 0 & 6 \\ 0 & 5 & 1 & 4 & 8 \\ 0 & 0 & 2 & 7 & 3 \\ 0 & 0 & 0 & 9 & 2 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$
, find the determinant

13. Use a determinant to find the area of the triangle with vertices (0,7), (5,0), and (3,9).

$$3x + z = 1$$
14. Use Cramer's Rule to solve the system $y + 4z = 3$ (Remember to fill in appropriate $x - y = 2$
zeros)

1. x = -1, $y = \frac{2}{3}$ **2.** x = 17, y = -2**3.** $x = \frac{1}{2}$, $y = \frac{-3}{4}$, $z = \frac{1}{4}$ 4. $x = \frac{1}{2}a$, $y = \frac{-1}{2}a$, z = a5. $\begin{bmatrix} 1 & 0 & 0 & | & 1 \\ 0 & 1 & 0 & | & -2 \\ 0 & 0 & 1 & | & -2 \end{bmatrix}$, x = 1, y = -2, z = -2 $6. \quad \begin{bmatrix} -4 & -12 \\ 5 & 6 \end{bmatrix}$ 7. $\begin{bmatrix} -3 & 13 \\ -27 & -1 \end{bmatrix}$ 8. $\begin{bmatrix} 1 & -1 & \frac{1}{2} \\ -3 & -1 & 1 \\ 3 & 2 & -\frac{3}{2} \end{bmatrix}$ 9. $\begin{bmatrix} \frac{11}{2} \\ -\frac{2}{3} \\ -\frac{3}{2} \end{bmatrix}$, $x = \frac{11}{2}$, y = -2, $z = -\frac{3}{2}$ 10. 27 11. 74 12. 540 13. 15.5 square units 14. $x = -\frac{1}{11}, y = -\frac{23}{11}, z = \frac{14}{11}$