\qquad

Precalculus Unit 5: Unit 5 Review Trigonometry

1. Convert to radians: 250°
2. Find the radian measure of the central angle of a circle with a radius of 75 inches that intercepts an arc of 25 inches.
3. Find the measure of the intercepted arc for a 50° angle on a circle of radius 2 feet.
4. Use your unit circle to find the exact value of each of the following:
a. $\sin \left(\frac{3 \pi}{4}\right)$
b. $\tan \frac{23 \pi}{6}$
c. $\sec \left(\frac{13 \pi}{4}\right)$
d. $\cos \left(\frac{-5 \pi}{6}\right)$
5. If the point $(-5,-12)$ is on the terminal side of θ, determine the exact values of the six trig functions of θ. (Hint: Draw an appropriate triangle)
6. Solve each of the following right triangles (CHECK THE MODE OF YOUR CALCULATOR!):
a.

b.

7. A 40 foot extension ladder leans against the side of a building. Find the distance, h, up the side of the building if the angle of elevation of the ladder is 68°. (5 points)
8. A ramp leading to a freeway overpass is 470 feet long and rises 32 feet. What is the average angle of inclination of the ramp to the nearest tenth of a degree? (5 points)
9. A blimp suspended in the air at a height of 500 feet, lies directly over a line from Soldier Field to the Adler Planetarium on Lake Michigan (see the figure). If the angle of depression from the blimp to the stadium is 32° and from the blimp to the planetarium is 23°, find the distance between Soldier Field and the Adler Planetarium.

10. As modeled below, a movie is projected onto a large outdoor screen. The bottom of the 60 -foot tall screen is 12 feet off the ground. The projector sits on the ground at a horizontal distance of 75 feet from the screen.

Determine to the nearest tenth of a degree, the measure of θ, the projection angle.

