Name

Precalculus Unit 12: Review 12.1-12.5

Use the formulas below as needed, but show work!

Finite Arithmetic Series:

Finite Geometric Series:

Infinite Geometric Series

$S_n = \frac{n}{2} \left(a_1 + a_n \right)$	$S_n = a_1 \left(\frac{1 - r^n}{1 - r} \right)$	$\sum_{n=1}^{\infty} (a_1 r^{n-1}) = a_1 (\frac{1}{1-r})$, when $ r < 1$
--	--	--

Problems:

For problems 1-3, write the first <u>three</u> terms of the following sequences (find a_1 , a_2 , and a_3): (3 points each):

$$1. \quad a_n = \frac{3n}{(n-1)!}$$

2.
$$a_{n+1} = -3a_n + 2$$
 $a_1 = 5$

- 3. A geometric sequence with $a_1 = -6$ and r = 3
- 4. Find a_{50} for the arithmetic sequence 23, 21, 19, 17, ... (4 points).

Identify each of the following sequences as arithmetic, geometric, or neither <u>and</u> write the formula for the nth term (4 points each):

5.
$$\frac{4}{3}, \frac{5}{9}, \frac{6}{27}, \frac{7}{81}, \frac{8}{243}, \dots$$

6. -2, 4, 10, 16, 24, ...

7. 2, 1,
$$\frac{1}{2}$$
, $\frac{1}{4}$, ...

Evaluate the following sums. SHOW WORK! (3 points each):

8.
$$\sum_{i=3}^{8} (3i+4)$$

9. Find the sum of the first 400 positive integers. (Hint: This is an arithmetic sequence.) $1+2+3+4+\dots+398+399+400$

10.
$$\sum_{n=1}^{100} 6 \left(\frac{2}{3}\right)^{n-1}$$

11.
$$\sum_{n=1}^{\infty} 25(0.03)^n$$

12.
$$\sum_{n=5}^{30} \frac{2^n}{5}$$

13. Use mathematical induction to prove that $2+7+12+17+...+(5n-3)=\frac{5}{2}n^2-\frac{1}{2}n$.

- a. What is the formula for a_n ? (1 point)
- b. What is the formula for S_n ? (1 point)
- c. Show that it is true for n = 1. (2 points)
- d. Assume that it is true for n = k. (2 points)

 $S_k =$

e. Show that it is true for n = k + 1 (4 points)

$$S_{k+1} =$$

$$S_{k+1} = S_k + a_{k+1}$$

14. Expand $(x - 2y)^6$ and simplify. SHOW WORK! (5 points).

15. Expand $(3x - 2i)^4$ and simplify (use $i^2 = -1$, etc...). SHOW WORK! (5 points)