\qquad

Precalculus Unit 12: Review

12.1-12.5

Use the formulas below as needed, but show work!

Finite Arithmetic Series:

$S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$

Finite Geometric Series:
Infinite Geometric Series
$S_{n}=a_{1}\left(\frac{1-r^{n}}{1-r}\right)$

Problems:

For problems 1-3, write the first three terms of the following sequences (find a_{1}, a_{2}, and a_{3}): (3 points each):

1. $a_{n}=\frac{3 n}{(n-1)!}$
2. $a_{n+1}=-3 a_{n}+2 \quad a_{1}=5$
3. A geometric sequence with $a_{1}=-6$ and $r=3$
4. Find a_{50} for the arithmetic sequence $23,21,19,17, \ldots$ (4 points).

Identify each of the following sequences as arithmetic, geometric, or neither and write the formula for the nth term (4 points each):
5. $\frac{4}{3}, \frac{5}{9}, \frac{6}{27}, \frac{7}{81}, \frac{8}{243}, \ldots$
6. $-2,4,10,16,24, \ldots$
7. $2,1, \frac{1}{2}, \frac{1}{4}, \ldots$

Evaluate the following sums. SHOW WORK! (3 points each):
8. $\sum_{i=3}^{8}(3 i+4)$
9. Find the sum of the first 400 positive integers. (Hint: This is an arithmetic sequence.)

$$
1+2+3+4+\cdots+398+399+400
$$

10. $\sum_{n=1}^{100} 6\left(\frac{2}{3}\right)^{n-1}$
11. $\sum_{n=1}^{\infty} 25(0.03)^{n}$
12. $\sum_{n=5}^{30} \frac{2^{n}}{5}$
13. Use mathematical induction to prove that $2+7+12+17+\ldots+(5 n-3)=\frac{5}{2} n^{2}-\frac{1}{2} n$.
a. What is the formula for a_{n} ? (1 point)
b. What is the formula for S_{n} ? (1 point)
c. Show that it is true for $n=1$. (2 points)
d. Assume that it is true for $n=k$. (2 points)

$$
S_{k}=
$$

e. Show that it is true for $n=k+1$ (4 points)

$$
S_{k+1}=
$$

$$
S_{k+1}=S_{k}+a_{k+1}
$$

14. Expand $(x-2 y)^{6}$ and simplify. SHOW WORK! (5 points).
15. Expand ($3 x-2 i)^{4}$ and simplify (use $i^{2}=-1$, etc...). SHOW WORK! (5 points)
