Precalculus: Section 8.4 Notes Mathematical Induction

Difference between a_n and S_n :

Why do we need mathematical induction (proof)?:

Mathematical Induction: Let P_n be a statement involving the positive integer n. If...

- 1. P_1 is true AND
- 2. The truth of P_k implies the truth of P_{k+1} for all positive k

Then P_k must be true for all positive integers n.

Examples:

- 1. $2 + 4 + 6 + 8 + \dots + 2n = n(n + 1)$
 - a. What is the formula for a_n ?
 - b. What is the formula for S_n ?
 - c. Show that the formula is true for n = 1.
 - d. Assume that the formula is true for n = k.
 - a. Assume $S_k =$
 - e. Show that the formula is true for S_{k+1} .
 - a. Show that $S_{k+1} =$
 - b. $S_{k+1} = S_k + a_{k+1}$

- 2. $3 + 8 + 13 + 18 + \dots + (5n 2) = \frac{n}{2}(5n + 1)$
 - a. What is the formula for a_n ?
 - b. What is the formula for S_n ?
 - c. Show that the formula is true for n = 1.
 - d. Assume that the formula is true for n = k.
 - a. Assume $S_k =$
 - e. Show that the formula is true for S_{k+1} .
 - a. Show that $S_{k+1} =$
 - b. $S_{k+1} = S_k + a_{k+1}$

- 3. $2 + 6 + 18 + 54 + \dots + 2 \cdot 3^{n-1} = 3^n 1$
 - a. What is the formula for a_n ?
 - b. What is the formula for S_n ?
 - c. Show that the formula is true for n = 1.
 - d. Assume that the formula is true for n = k.
 - a. Assume $S_k =$
 - e. Show that the formula is true for S_{k+1} .

a. Show that $S_{k+1} =$

b. $S_{k+1} = S_k + a_{k+1}$

4. $\sum_{i=1}^{n} i^4 = \frac{n(n+1)(2n+1)(3n^2+3n-1)}{30}$

- a. What is the formula for a_n ?
- b. What is the formula for S_n ?
- c. Show that the formula is true for n = 1.
- d. Assume that the formula is true for n = k.
 - a. Assume $S_k =$
- e. Show that the formula is true for S_{k+1} .
 - a. Show that $S_{k+1} =$
 - b. $S_{k+1} = S_k + a_{k+1}$