Precalculus: Section 8.4 Notes
 Mathematical Induction

Difference between a_{n} and S_{n} :

Why do we need mathematical induction (proof)?:

Mathematical Induction: Let P_{n} be a statement involving the positive integer n. If...

1. P_{1} is true AND
2. The truth of P_{k} implies the truth of P_{k+1} for all positive k

Then P_{k} must be true for all positive integers n.

Examples:

1. $2+4+6+8+\cdots+2 n=n(n+1)$
a. What is the formula for a_{n} ?
b. What is the formula for S_{n} ?
c. Show that the formula is true for $n=1$.
d. Assume that the formula is true for $n=k$.
a. Assume $S_{k}=$
e. Show that the formula is true for S_{k+1}.
a. Show that $S_{k+1}=$
b. $S_{k+1}=S_{k}+a_{k+1}$
2. $3+8+13+18+\cdots+(5 n-2)=\frac{n}{2}(5 n+1)$
a. What is the formula for a_{n} ?
b. What is the formula for S_{n} ?
c. Show that the formula is true for $n=1$.
d. Assume that the formula is true for $n=k$.
a. Assume $S_{k}=$
e. Show that the formula is true for S_{k+1}.
a. Show that $S_{k+1}=$
b. $S_{k+1}=S_{k}+a_{k+1}$
3. $2+6+18+54+\cdots+2 \cdot 3^{n-1}=3^{n}-1$
a. What is the formula for a_{n} ?
b. What is the formula for S_{n} ?
c. Show that the formula is true for $n=1$.
d. Assume that the formula is true for $n=k$.
a. Assume $S_{k}=$
e. Show that the formula is true for S_{k+1}.
a. Show that $S_{k+1}=$
b. $S_{k+1}=S_{k}+a_{k+1}$
4. $\quad \sum_{i=1}^{n} i^{4}=\frac{n(n+1)(2 n+1)\left(3 n^{2}+3 n-1\right)}{30}$
a. What is the formula for a_{n} ?
b. What is the formula for S_{n} ?
c. Show that the formula is true for $n=1$.
d. Assume that the formula is true for $n=k$.
a. Assume $S_{k}=$
e. Show that the formula is true for S_{k+1}.
a. Show that $S_{k+1}=$
b. $S_{k+1}=S_{k}+a_{k+1}$
