Precalculus: Section 1.5
 Combinations of Functions

Sum, Difference, Product, and Quotient of Functions

Sum: $(f+g)(x)=f(x)+g(x)$ Difference: $(f-g)(x)=f(x)-g(x)$

Product: $(f \cdot g)(x)=f(x) \cdot g(x)$ Quotient: $\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)} \quad, \quad g(x) \neq 0$
***The domain of a combination of functions is all elements common to the domain of functions f and g.
*** We looked at an example with polynomials together in class. The following example is one using square roots.

Example: $g(x)=\sqrt{4-x^{2}} \quad, \quad h(x)=\sqrt{x}$

Domain of $g(x) \Rightarrow-2 \leq x \leq 2$; domain of $h(x) \Rightarrow x \geq 0$ (This is so there are no negative values underneath the square roots!)
a) $(g+h)(x)=\sqrt{4-x^{2}}+\sqrt{x} \quad$ (This is as simplified as this gets - the domain is the overlap of the domains that we found above individually: $0 \leq x \leq 2$
b) $(g-h)(x)=\sqrt{4-x^{2}}-\sqrt{x}$ (This also cannot be simplified any further - same domain as part a.)
c) $(f \cdot g)(x)=\sqrt{4-x^{2}} \cdot \sqrt{x}=\sqrt{4 x-x^{3}}$ (You can multiply values that are both under a square root, so this simplifies slightly. The domain is the same as parts a and b.)
d) $\left(\frac{f}{g}\right)(x)=\frac{\sqrt{4-x^{2}}}{\sqrt{x}}=\sqrt{\frac{4-x^{2}}{x}}$ (Division of roots can be combined under a single root and then reduced if the fraction is reducible. The domain here is similar, but it changes slightly to $0<x \leq 2$. Notice that the 0 is no longer included because it creates a zero denominator.)
e) $(g+h)(0)=\sqrt{4-0^{2}}+\sqrt{0}=2$ (Substitute 0 into $\left.(g+h)(x)\right)$

[^0]Composition of Functions:

$$
f(g(x))=(f \circ g)(x)
$$

Example: $f(x)=\frac{1}{x} \quad$ Domain: All real numbers, $x \neq 0$

$$
g(x)=x+5 \quad \text { Domain: All real numbers }
$$

a) $(f \circ g)(x)=\frac{1}{x+5} \quad$ Domain: All real numbers, $x \neq-5$

For $(f \circ g)(x)$, function g is substituted into function f. That is, function g replaces the x in function f.
b) $(g \circ f)(x)=\frac{1}{x}+5 \quad$ Domain: All real numbers, $x \neq 0$

For $(g \circ f)(x)$, function f is substituted into function g. That is, function f replaces the x in function g.

Example: $f(x)=x^{2}+3 x-2 \quad g(x)=4 x-5$
a) $(f \circ g)(x)=(4 x-5)^{2}+3(4 x-5)-2=16 x^{2}-28 x+8$
b) $(g \circ f)(x)=4\left(x^{2}+3 x-2\right)-5=4 x^{2}+12 x-13$

Homework: pp. 58-61 \#'s 7, 12, 15, 18, 20, 35, 36, 39, 40, 43, 48a, 64, 73, 79

[^0]: *** Take a look at these graphs on the calculator and you will see that the domains fit the results.

