PreCalculus: Section 4.2 Logarithmic Functions: Homework

Rewrite in exponential form.

1. $log_3 81 = 4$	2. $log_7 7 = 1$	3. $log_{14}1 = 0$
-------------------	------------------	--------------------

Rewrite in logarithmic form.		
4. $5^3 = 125^3$	5. $9^{3/2} = 27$	6. $e^3 = 20.0855$

Simplify each expression.		
7. $7^{\log_7(x)}$	8 . 10 ^{log8}	9. <i>log</i> ₂ 32 ^{<i>x</i>}

Evaluate each logarith	m <u>without using a calculator</u> .	
10. <i>log</i> ₉ 1	11. <i>log</i> ₂ 64	12. log _{1/2} 8

12 100 625	14 log 1/4	15 log 1/26
13. 1085025	14. <i>l0g</i> ₁₆ 1/4	$15.10g_61750$

Graph the following and state the domain and range.

10. $log_2 x - 3$ Domain:

11. $log_5(x + 1) - 3$ Domain:

Range:

12. The wind speed s (in miles per hour) near the center of a tornado can be modeled by s = 93logd + 65

where d is the distance (in miles) that the tornado travels. In 1925, a tornado traveled 220 miles through three states. Estimate the wind speed near the tornado's center.

13. Biologists have found that an alligator's length l (in inches) and weight w (in pounds) are related by the function l = 27.1 lnw - 32.8. Graph the function. Use your graph to estimate the weight of an alligator that is 10 feet long.

14. A study in Florida found that the number of fish species *s* in a lake can be modeled by the function $s = 30.6 - 20.5(logA) + 3.8(logA)^2$ where *A* is the area (in square meters) of the lake.

- a. Use a graphing utility to graph the function on the domain $200 \le A \le 35,000$.
- b. Use your graph to estimate the number of fish species in a lake with an area of 30,000 square meters.
- c. Use your graph to estimate the area of the lake that contains 6 species of fish.
- d. Describe what happens to the number of fish species as the area of the lake increases. Explain why your answer makes sense.