PreCalculus: Section 4.2 Logarithmic Functions: Homework

Rewrite in exponential form.

1. $\log _{3} 81=4$
2. $\log _{7} 7=1$
3. $\log _{14} 1=0$

Rewrite in logarithmic form.
4. $5^{3}=125$
5. $9^{3 / 2}=27$
6. $e^{3}=20.0855 \ldots$

Simplify each expression.
7. $7^{\log _{7}(x)}$
8. $10^{\log 8}$
9. $\log _{2} 32^{x}$

Evaluate each logarithm without using a calculator.
10. $\log _{9} 1$
11. $\log _{2} 64$
12. $\log _{1 / 2} 8$
13. $\log _{5} 625$
14. $\log _{16} 1 / 4$
15. $\log _{6} 1 / 36$

Graph the following and state the domain and range.
10. $\log _{2} x-3$

Domain:

Range:

12. The wind speed s (in miles per hour) near the center of a tornado can be modeled by

$$
s=93 \log d+65
$$

where d is the distance (in miles) that the tornado travels. In 1925, a tornado traveled 220 miles through three states. Estimate the wind speed near the tornado's center.
13. Biologists have found that an alligator's length l (in inches) and weight w (in pounds) are related by the function $l=27.1 \ln w-32.8$. Graph the function. Use your graph to estimate the weight of an alligator that is 10 feet long.

14. A study in Florida found that the number of fish species s in a lake can be modeled by the function $s=30.6-20.5(\log A)+3.8(\log A)^{2}$ where A is the area (in square meters) of the lake.
a. Use a graphing utility to graph the function on the domain $200 \leq A \leq 35,000$.
b. Use your graph to estimate the number of fish species in a lake with an area of 30,000 square meters.
c. Use your graph to estimate the area of the lake that contains 6 species of fish.
d. Describe what happens to the number of fish species as the area of the lake increases. Explain why your answer makes sense.

