Precalculus Unit 3: 3.3 Homework Exploring Data: Linear, Quadratic, and Cubic Models

1. The table shows the normal monthly precipitation *P* for San Francisco, California. (Source: U.S. National Oceanic and Atmospheric Administration)

Month	Precipitation, P		
January	4.45		
February	4.01		
March	3.26		
April	1.17		
May	0.38		
June	0.11		
July	0.03		
August	0.07		
September	0.20		
October	1.40		
November	2.49		
December	2.89		

a.) Use your calculator to create a scatter plot of the data. Let t = 1 correspond to January. Draw a sketch of the scatter plot below.

b.) Use your calculator to find a quadratic model for this data. Sketch your model on the graph above. Record your model below. What is the R^2 value?

Model:

 R^2 :

c.) According to your model, what is the normal rainfall amount for October?

BOATING The data in the table give the average speed y (in knots) of the *Trident* motor yacht for several different engine speeds x (in hundreds of revolutions per minute, or RPMs).

- a. Find a polynomial model for the data.
- b. Estimate the average speed of the Trident for an engine speed of 2400 RPMs.
- c. What engine speed produces a boat speed of 14 knots?

Engine speed, x	9	11	13	15	17	19	21.5
Boat speed, y	6.43	7.61	8.82	9.86	10.88	12.36	15.24

2.