Name_

Ιv

Precalculus Unit 3: 3.2 Homework Rational Function Graphs

For each of the following rational functions, find the domain, the vertical asymptote(s) / hole(s), the horizontal asymptote / slant asymptote, the x-intercept(s), the y-intercept, and draw a sketch. **Provide work to support your answer.**

$$2. \quad f(x) = \frac{2x}{x^2 + x - 2}$$

Domain:	x-int:	∥I 9.9.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1
VA:		~7 6 5
		• -9 -8 -7 -6 -5 -4 -3 -2 -1 -1 1 2 3 4 5 6 7 8 9 x
	v int:	4
Hole:	γ-111 τ .	

HA / SA:

3.
$$f(x) = \frac{x^2 + 3x}{x^2 + x - 6}$$

Domain:

VA:

Hole:

HA / SA:

x-int:

y-int:

I 7 -6 -5 -4 Πv

4.
$$f(x) = \frac{2x^2 - 5x + 5}{x - 2}$$

Domain:

x-int:

VA:

Hole:

y-int:

HA / SA:

- 5. The concentration C of a chemical in the bloodstream t hours after injection into muscle tissue is given by $C = \frac{3t^2+t}{t^3+50}$, $t \ge 0$.
 - a.) Determine the horizontal asymptote and interpret its meaning in the context of the problem.
 - b.) Graph the function on a graphing utility and approximate the time when the concentration is the greatest.
 - c.) Use the graphing utility to determine when the concentration is less than 0.345.