\qquad

Precalculus Unit 3: 3.1 Homework Rational Functions and Asymptotes

Match each function with its graph.
(a)

(b)

(c)

(d)

(e)

(f)

1. $f(x)=\frac{2}{x+2}$
2. $f(x)=\frac{1}{x-3}$
3. $f(x)=\frac{4 x+1}{x}$
4. $f(x)=\frac{1-x}{x}$
5. $f(x)=\frac{x-2}{x-4}$
6. $f(x)=\frac{-x-2}{x+4}$

For each of the following functions, find the domain, vertical asymptotes / holes, and horizontal asymptotes. Provide supporting work.
7. $f(x)=\frac{3}{(x-2)^{3}}$

Domain:
Vertical Asymptote(s):
Hole(s):
Horizontal Asymptote:
8. $f(x)=\frac{-5 x^{2}-14 x+3}{2 x^{2}+7 x+3}$

Domain:
Vertical Asymptote(s):
Hole(s):
Horizontal Asymptote:
9. $f(x)=\frac{3 x^{2}+1}{x^{2}+x+9}$

Domain:
Vertical Asymptote(s):
Hole(s):
Horizontal Asymptote:
10. The cost C (in millions of dollars) of removing $p \%$ of the industrial and municipal pollutants discharged into a river is given by $C=\frac{255 p}{100-p^{\prime}} 0 \leq p<100$.
a.) Find the cost of removing 10% of the pollutants.
b.) Find the cost of removing 75% of the pollutants.
c.) According to this model, would it be possible to remove 100% of the pollutants? Why or why not?
11. The game commission introduces 100 deer into newly acquired state game lands. The population N of the herd is given by $N=\frac{100+60 t}{1+0.04 t}, t>0$ where t is time in years.
a.) Use a graphing utility to graph the model. Draw a sketch here.
b.) Find the populations when $t=5, t=10$, and $t=25$.
c.) What is the limiting size of the herd as time increases? How did you determine this?

