Precalculus Unit 2: 2.3 Notes Real Zeros of Polynomial Functions

1. The Factor Theorem: A polynomial $f(x)$ has a factor $(x-a)$ iff $f(a)=0$.

EX: Show that $x=2$ is a solution to $x^{3}-7 x+6=0$ and use the result to factor completely.

EX: Show that $(x-2)$ and $(x+3)$ are factors of $f(x)=2 x^{4}+7 x^{3}-4 x^{2}-27 x-18$. Then factor completely.
2. The Rational Zero Test: If a polynomial has integer coefficients, and p and q are relatively prime, then every rational zero is of the form $\frac{p}{q}$ where p is a factor of the constant term and q is a factor of the leading coefficient.

EX: List the possible rational solutions for the function f given by $f(x)=6 x^{3}-x^{2}+9 x+4$.

EX: Find the possible rational zeros of $f(x)=2 x^{3}+3 x^{2}-8 x+3$.
3. DesCartes Rule of Signs: Let $f(x)$ be a polynomial with real coefficients
a. The number of positive real zeros of f is either equal to the number of sign changes of $f(x)$ or less than that by an even integer.
b. The number of negative real zeros of f is either equal to the number of sign changes of $f(-x)$ or less than that by an even integer.

EX: Find the number of real zeros for the function f given by $f(x)=2 x^{3}+3 x^{2}-8 x+3$.

4. Putting It All Together:

Ex: Find all real zeros of the polynomial $f(x)=x^{4}-x^{3}-29 x^{2}-x-30$.

Ex: Find all real zeros of the polynomial $f(x)=8 x^{4}-14 x^{3}-71 x^{2}-10 x+24$.

