Precalculus Unit 1: 1.2 - Extra Examples
 Finding Domain from a Function Equation

Finding Domain:

For the functions we will be working with at this time, the domain will be all real numbers unless you have one of the following:

1. A value that creates a zero in the denominator.
2. A value that creates a negative number under an even root.

Some examples:
A. $f(x)=\frac{6}{5} x^{2}-4 x+2 \quad$ For this function, there are no fractions with variables in the denominator and there are no even roots. It has a domain of All Real Numbers.
B. $g(z)=\frac{8 z+2}{15} \quad$ This function also has a domain of All Real Numbers because it doesn't have a fraction with a variable in the denominator and there are no even roots.
C. $f(x)=\frac{4+x}{8-x} \quad$ With this function we run in to the problem of having a zero in the denominator. To find the domain in this case, take the denominator and set it equal to zero and then solve that equation.

$$
8-x=0 \text { so } x=8
$$

The solution(s) to this equation are the values that CANNOT be included in the domain for this function, so the domain is All Real Numbers, $x \neq 8$.
D. $h(x)=\frac{5 x+3}{2 x^{2}-3 x-2}$

Here again, we have an issue with zero in the denominator. Start by setting the denominator equal to zero and solving that equation. Since this is a quadratic equation, it will require some factoring or the use of the quadratic formula.
$2 x^{2}-3 x-2=0 \quad \rightarrow \quad(2 x+1)(x-2)=0 \quad \rightarrow \quad x=\frac{-1}{2} \quad$ or $x=2$
The domain is then All Real Numbers, $x \neq \frac{-1}{2}, x \neq 2$.
E. $g(x)=\sqrt{3+x} \quad$ The problem with the domain of this function is that we potentially will have a negative under the root. To find a domain when an even root is involved, take the expression that is under the root and make it greater than or equal to zero to avoid negatives.
$3+x \geq 0 \quad \rightarrow \quad x \geq-3$

The solution to this inequality, $\boldsymbol{x} \geq-\mathbf{3}$ is the domain of this function.
F. $f(x)=\sqrt[3]{x}$

The domain for this function is All Real Numbers because the index on the root, 3 , is odd.
G. $h(x)=\sqrt{16-x^{2}}$

This is an even indexed root, so take the expression under the root and write your inequality.
$16-x^{2} \geq 0 \quad \rightarrow \quad 16=x^{2} \quad \rightarrow \quad x= \pm 4 \quad \rightarrow \quad-4 \leq x \leq 4$

The solution to this inequality, $-\mathbf{4} \leq \boldsymbol{x} \leq \mathbf{4}$ is the domain of this function.

